Genetic Diversity of the White Collar-2 (*wc-2*) Gene in Cereal *Phaeosphaeria* pathogens

Ericka Yan-Hsin Chiu¹, Pi-Fang Linda Chang², Ling-Yan Gao³, Chun-Chi Chou⁴ and Peter P. Ueng^{5,6}

¹ Seed Improvement and Propagation Station, Taichung, 426, Taiwan

² Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan

^{3.} Inner Mongolia Agriculture University, College of Ecology and Environmental Science, Inner Mongolia, PRC

⁴ Tenha life science Co., Tainan, Taiwan

⁵ Molecular Plant Pathology Laboratory, Plant Science Institute, U.S. Department of Agriculture, ARS, Beltsville, MD 20705, USA

⁶ Corresponding author, E-mail: ppuuueng@gmail.com; Fax: +1-301-504-5449 Accepted for publication: September 21, 2009

ABSTRACT

Chiu, E. Y. H., Chang, P. F., Gao, L. Y., Chou, C. C., and Ueng, P. P. 2009. Genetic diversity of the white collar-2 (*wc-2*) gene in cereal *Phaeosphaeria* pathogens. Plant Pathol. Bull. 18: 175-183.

The white collar-2 (*wc-2*) gene encodes a light responsive white collar-2 (*wc-2*) protein that forms a heterodimeric complex with white collar-1 protein, activates numerous light-dependent reactions including asexual sporulation and pathogenic aggressiveness, and maintains circadian clocks in ascomycete fungi. The structure of the *wc-2* gene and phylogenetic relationships based on the deduced polypeptide sequences in cereal *Phaeosphaeria* pathogens were investigated. The *wc-2* gene in 2 *Phaeosphaeria nodorum* (barley- (PN-b) and wheat- (PN-w) biotypes), 4 *Phaeosphaeria avenaria* (1 *P. a.* f. sp. *avenaria*, Paa and 3 *P. a.* f. sp. *triticea*, Pat1, Pat2 and Pat3), 1 *Phaeosphaeria* sp. from Polish rye (P-rye) and 1 *Phaeosphaeria* sp. from dallis grass (P-dg) contained two introns, transcribed to produce 1,410 bp mRNA and encoded a 469 amino acid polypeptide. Based on the deduced polypeptide sequences, *Phaeosphaeria* species were phylogetically closely related as a group, with the exception of Pat2 isolates from wild foxtail barley (*Hordeum jubatum* L.).

Keywords: white collar-2 protein, Phaeosphaeria, wheat

Phaeosphaeria nodorum (E. Müll.) Hedjar. [anamorph: *Stagonospora nodorum* (Berk.) E. Castell. & Germano] and *Phaeosphaeria avenaria* (G. F. Weber) O.E. Erikss. [anamorph: *Stagonospora avenae* (A. B. Frank) Bissett] are two important causal agents of Stagonospora leaf blotch diseases in cereals ^(19, 23). The identification of these two pathogens is based largely on morphology of the anamorph and host pathogenicity ^(8, 9, 10). Recently, genetic relatedness and differentiation of cereal *Phaeosphaeria* species have been examined at the molecular level. The phylogenetic relationships of *Phaeosphaeria* species have been discussed based on the nucleotide and amino acid sequences. In the glyceraldehyde-3-phosphate dehydrogenase (gpd), β -tubulin (tubA), β -glucosidase (bgl1) and white collar-1 (wc-1) genes, homothallic *P. avenaria* f.sp. triticea (T. Johnson) Shoemaker & C. E. Babc. (Pat1) is more closely related to the phylogenetic

clade containing *P. avenaria* f. sp. *avenaria* (Weber) O. E. Erikss. (Paa), *P. avenaria* f. sp. *triticea* from Washington State (Pat3) and barley-biotype *P. nodorum* (PN-b) than wheat- biotype *P. nodorum* (PN-w)^(5, 20, 21, 26). In the RNA polymerase II (*RPB2*) gene, homothallic Pat1 apparently is related to PN-w, heterothallic *P. avenaria* f. sp. *triticea* from foxtail barley (*Hordeum jubatum* L.) (Pat2) and *Phaeosphaeria* sp. from rye (P-rye)⁽¹⁸⁾. On the contrary, the trifunctional histidine biosynthesis (*his*) gene in Pat1 was not closely related to neither PN-w nor the clade including Paa, Pat3 and PN-b⁽²⁷⁾.

The white collar-2 (wc-2) gene encodes a light responsive protein (wc-2) that controls numerous lightdependent reactions and maintains circadian clocks in higher fungi^(12, 15). The wc-2 protein is a transcription factor containing a single PER-ARNT-SIM (PAS) and putative GATA-type zinc finger (Znf) domains in ascomycete fungi. In Neurospora crassa, wc-2 protein forms a heterodimeric white collar complex (WCC) with white collar-1 (wc-1) protein and maintains the steady-state level of wc-1 protein⁽¹⁾. The WC-2 protein induces transcription of the frequency (frq) gene through WCC^(4, 6). The frequency (frq)/WCC-based (FWC) oscillator is the core circadian oscillator for many observed circadian rhythms in N. crassa including rhythmic conidiation (3, 7, 15). In addition, functional wc-1 and wc-2 are also reported to be required in another circadian frq-less oscillator (FLO), such as ccg16 FLO, which is temperature compensated but not necessarily light regulated⁽¹¹⁾. Several review papers on circadian clocks in fungi have been recently published^{(2, 13,} 14, 17)

In this report, the structure of the *wc-2* gene and phylogenetic relationships based on the deduced polypeptide sequences in cereal *Phaeosphaeria* pathogens were investigated.

The full-length *wc-2* gene sequence in PN-w isolate SN15 was retrieved by a protein BLAST search of *Stagonospora nodorum* isolate SN15 database (http: www.broad.mit.edu) with *wc-2* protein from *Neurospora crassa* (Accession no. P78714) as the query ⁽¹⁶⁾. The *wc-2* gene in PN- w isolate SN15 (SNOG_14195) was 1,517 bp in length, contained two introns (nt22-nt80 and nt1357nt1404) and encoded a 469 amino acid long polypeptide.

Procedures for fungal culture in a liquid medium and for genomic DNA (gDNA) isolation were described previously $^{(25)}$. To determine the *wc*-2 gene expression in PN-w, total RNA was isolated from a Sn37-1 culture grown under continuous fluorescent lights at room temperature (20±1°C) on sterile nitrocellulose membranes (BA-S 85, Schleicher & Schuell Inc., Keene N. H.) layered on V-8 juice agar (18% V8 juice, 0.2% calcium carbonate, and 2% agar)⁽⁵⁾. Total RNA purification and first strand cDNA synthesis followed the procedures described by Wang et al.⁽²⁷⁾. Four primer sets (1A/1B, 2A/2B, 3A/3B and 3A/8B) designed from the 1,703 bp wc-2 gene nucleotide sequence of PN-w isolate SN15, including a 1,517 bp coding sequence and a 186 bp partial 3' end sequence (Accession no. CH445354, nt 224083-nt225785), were used to amplify the wc-2 gene from gDNA and 1x cDNA in PN-w isolate Sn37-1 (Table 1). The wc-2 gene in PN-w isolate Sn37-1 was determined to contain 2 spliced introns, as annotated in SNOG_14195 (http://www.broad.

Primer sets	Nucleotide positions ¹	Sequences $(5' \rightarrow 3')$	Phaeosphaeria species ²
1A/1B	1-21/765-745	ATGGCCATGTACCAAGGAGAG/ CATTCTTGGTCGGATATGGAC	All
2A/2B	626-647/1185-1164	CAAGATCGACGACTCGTGTATC/ CACGTATGAGGTTCGGACTTGC	All except Pat2
2AA/2BA	626-647/1185-1164	CAAGATTGATGATTCGTATCTCATC/ CGCGAATGAGGTTCGGACTCGC	Pat2
3A/3B	1086-1107/1517-1493	CATCTGGAGACGATTGAAATGC/ TCAGCTGCTACCGGTACTCGTATGC	All
3A/8B	1086-1107/1703-1681	CATCTGGAGACGATTGAAATGC/ CTAGTGGCCTCTAGCCTCGAGCT	All

Table 1. Oligonucleotide primers used to amplify PCR products from the white collar-2 (*wc-2*) gene in cereal *Phaeosphaeria* species

¹ Nucleotide positions (nt) are in accord with the *wc-2*-like gene (SNOG_14195) reported in *Phaeosphaeria nodorum* SN15 isolate.

² *Phaeosphaeria* species include wheat-biotype *P. nodorum* (PN-w), barley-biotype *P. nodorum* (PN-b), *P. avenaria* f. sp. *avenaria* (Paa), *P. avenaria* f. sp. *triticea* (Pat1, Pat2 and Pat3), and *Phaeosphaeria* spp. from rye (P-rye) and dallis grass (P-dg).

Species	Original host	Year	Geographic location	GenBank accession number
Phaeosphaeria nodorum (whe	eat-biotype) (PN-w)			
Sn37-1	Wheat	-	Szelejewo, Poland	GQ254704
8408	Wheat	1986	Mandan, ND, USA	GQ254705
Sn27-1	Wheat	-	Sieradz, Poland	GQ254706
S-79-1	Triticale (<i>xTriticosecale</i>)	1979	Tifton, GA, USA	(=GQ254706)
9074	Wheat (Triticum aestivum L.)	1983	Gallatin County, MT, USA	GQ254707
9076	Wheat	1986	Richland County, MT, USA	(=GQ254707)
Sn26-1	Wheat	-	Rzeszów, Poland	GQ254708
S-78-13	Wheat	1978	Toluca, Mexico	(=GQ254708)
S-81-B13B	Barley (Hordeum vulgare L.)	1981	Bledsoe, GA, USA	(=GQ254708)
Phaeosphaeria sp. (From Pola	and) (P-rye)			
Sn48-1	Winter rye (Secale cereale L.)	1995	Jelenia Góra, Poland	GQ254709
Sn23-1	Winter rye	-	Bydgoszcz, Poland	(=GQ254709)
Phaeosphaeria nodorum (bar				
S-83-2 (ATCC200841)	Barley	1983	Tifton, GA, USA	GQ254700
S-80-603	Barley	1980	Williamson, GA, USA	GQ254701
S-82-13 (ATCC200805)	Barley	1982	Senoia, GA, USA	(=GQ254701)
S-80-611 (ATCC200842)	Barley	1980	Laurinburg, NC, USA	GQ254702
S-81-B9	Barley	1981	Clayton, GA, USA	GQ254703
Phaeosphaeria avenaria f. sp.	. avenaria (Paa)			
5413	Oat (Avena sativa L.)	1983	Ontario, Canada	GQ254691
ATCC12277	Oat	-	USA	GQ254692
ATCC58582	Wheat	1984	New York, USA	GQ254693
ATCC58583	Wheat	1984	New York, USA	(=GQ254693)
Sa37-2	Oat	2001	Radzików, Poland	GQ254694
Phaeosphaeria avenaria f. sp.	. triticea (Pat1)			
Sat24-1	Wheat	-	Warmińsko-Mazurskie, Poland	GQ254695
10052-2	Wheat	1988	Langdon, ND, USA	(=GQ254695)
12618	Wheat	1995	Dickinson, ND, USA	(=GQ254695)
ATCC26374	Foxtail barley (<i>Hordeum jubatum</i> L.)	1972	Minnesota, USA	(=GQ254695)
ATCC26375	Foxtail barley	1972	Minnesota, USA	(=GQ254695)
Phaeosphaeria avenaria f. sp.	. triticea (Pat2)			
ATCC26370	Foxtail barley	1972	Minnesota, USA	GQ254696
ATCC26377	Foxtail barley	1972	Minnesota, USA	GQ254697
Phaeosphaeria avenaria f. sp.	. triticea (Pat3)			
S-81-W10	Wheat	1981	Washington, USA	GQ254698
Phaeospharia sp. (P-dg)				
S-93-48	Dallis grass	1993	Griffin, GA. USA	GQ254699
	(Paspalum dilatatum Poir.)			

Table 2. Isolates of *Phaeosphaeria* species used for analysis of the white collar-2 (wc-2) gene

mit.edu). A third intron (nt1465-nt1557) suggested to be spliced in the 1703 bp wc-2 gDNA sequence (SNOG_14196, GenBank accession no. XM_001804342 for mRNA) was not found (Fig. 1). Therefore, the deduced

polypeptide of the wc-2 protein in the PN-w isolates should be 469 amino acids long, instead of 500 amino acids as reported for SNOG_14196 (Accession no. EAT78433) (Fig. 1).

Intron 1

	ATGG	CCA	TGT	ACC	AAG	GAG	AGg	ttc	gta	ccc	cca	cat	ccg	acc	agg	gtc	gtc	ccc	acg	ta	60
1	MA	. M	I Y	ç	2 G	E															
	ttga	gaa	itcg	gtg	raat	gta	gAT	GGG	ССТ	GAA	TGG	ССТ	GCC	AAC	GCA	ACA	ACA	ACT	CGA	СС	120
8							м	G	L	N	G	L	P	т	Q	Q	Q	L	D	L	
	TCAG	CAG	GCAT	GCC	GAT	'GAT	GAA	CAT	GGA	CAT	GGA	CAT	GGA	ССТ	GTC	GCT	CGA	CGG	TGC	TG	180
22	S	s	м	P	м	м	N	м	D	м	D	м	D	L	s	L	D	G	A	D	
	ACGC	GAA	CAA	TGC	CGC	TGG	CTT	CGC	AGC	CTT	TCC	GAA	CCA	GAT	GCA	GTC	CAA	TGT	AGC	TG	240
42	A	N	N	A	A	G	F	A	A	F	P	N	Q	м	Q	s	N	v	A	A	
	CCAG	TAG	GCAC	TGC	CAG	CGA	TGC	GGG	TGG	GTA	CTC	CAT	GGC	CCA	GGA	GAT	CAG	TCT	GTC	GG	300
62	s	s	т	A	s	D	A	G	G	Y	s	м	A	Q	E	I	s	L	s	G	
	GCGC	GGG	STGC	TGG	GCC	ACT	GCC	TAC	AGG	GTT	CGG	TGC	GCC	CAG	TAT	GAA	ссс	GTC	TGG	CA	360
82	A	G	A	G	P	L	P	т	G	F	G	A	P	s	м	N	P	s	G	S	
	GCAC	CCI	GAC	CGA	GTT	CAC	CAA	ACG	GCG	GAA	CTG	GTC	GCA	GCG	CGT	GCT	GGA	GGA	GCT	GC	420
102	т	L	т	E	F	т	к	R	R	[ท	W	s	Q	R	v	L	E	Е	L	R	
										PA	S										
	GTGA	TCI	GCI	'GCA	CAI	ATT	GAC	GCC	TGA	.CGG	CAG	AAT	ACT	GTA	CAT	GTC	GCC	GTC	GTG	CA	480
122	D	L	L	н	I	L	т	P	D	G	R	I	L	Y	м	s	P	s	с	ĸ	
	- AGGC	GCI	GAC	CGG	CTG	GGA	.ccc	TTC	ACA	- GCT	GAC	GGG	TCG	CTT	CAT	CAA	CGA	GTT	CAT	СС	540
142	A	L	т	G	W	D	P	s	Q	L	т	G	R	F	I	N	D	F	I	н	
	ATCC	CGA	CGA	TAT	TGG	CAT	ATT	CGT	CAA	AGA	GTT	CAA	CGA	GTC	GAT	AGC	GTC	TGG	AAA	CC	600
162	P	D	D	I	G	I	F	v	к	Е	F	N	Е	s	I	A]	s	G	N	P	
	CGCI	GCG	GTT	CTT	СТА	CCG	CTT	CCG	CAA	GAT	CGA	CGA	CTC	GTG	TAT	CAT	TTT	CGA	ATC	сс	660
182	L																				
	ACGG	CCA	CCC	ACA	TCT	GAG	CAG	CGA	CTC	CAG	CTC	TTT	TGC	GCC	GCC	AAA	TGC	GCT	CAA	CT	720
202	G																				
	GCCG	CGG	CTT	CTT	CCT	CAT	GGC	GCG	TCC	АТА	TCC	GAC	CAA	GAA	TGC	CGC	ССТ	CCT	CGA	СТ	780
222	R																				
																					840
242	F	L	E	н	ĸ	I	E	N	E	R	L	т	ĸ	R	I	Α	Е	L	ĸ	R	
	GCGA	.GGA	GCA	GGA	CGA	GAA	TGA	TGA	ATG	GAC	AAG	GAA	GAC	GGA	AGG	CGC	GTC	CCA	GTC	GG	900
262	E	E	Q	D	Е	N	D	E	W	т	R	ĸ	т	Е	G	A	S	Q	S	Е	

	AAAC	ACC	GAC	ACA	ACC	CAC	CCA	GAG	CAT	CGC	GCC	GAG	TGA	TGC	TGC	ATC	ATA	CGC	GCA	AA	960
282	т	P	т	Q	P	т	Q	s	I	A	P	s	D	A	A	s	Y	A	Q	м	
	TGCC	GCC	GCC	AGC	CAA	GCC	TGT	AAT	ATC	AAA	TAC	TGC	GCT	TAC	GCG	GCA	GAA	TCT	CGA	CG	1020
302	P	P	P	A	ĸ	P	v	I	S	N	т	A	L	т	R	Q	N	L	D	E	
	AGGC	ACT	AGC	TGC	AAC	AAA	.GCA	AGA	CAG	TAT	CAA	CGA	CAA	GAT	GGC	TAG	ATA	TGA	AGG	CG	1080
322	A	L	A	A	т	ĸ	Q	D	S	I	N	D	ĸ	М	A	R	Y	E	G	A	
	CAAA	CCA	TCT	GGA	GAC	GAT	TGA	AAT	GCT	CAC	CGG	ACT	GCG	СТА	CCG	AGA	TGG	CGA	GCG	СТ	1140
342	N	н	L	E	т	I	E	м	L	т	G	L	R	Y	R	D	G	E	R	S	
	CACA	AGG	TAT	CAG	CAC	TGG	TGA	CGC	AAG	TCC	GAA	CCT	CAT	ACG	TGG	CGA	TGC	TGG	CAT	AC	1200
362	Q	G	I	s	т	G	D	A	S	P	N	L	I	R	G	D	A	G	I	Q	
	AAAI	CTC	GGC	GGA	CCG	AGA	CGG	GCG	CGG	GTC	ATC	CGA	CAA	AAA	GAA	GAA	ACT	CAA	GAT	CG	1260
382	I	S	A	D	R	D	G	R	G	S	S	D	ĸ	K	ĸ	K	L	K	[1	A	
																			Zn	F	
	CGGA	CGA	GTA	TGT	GTG	TAC	CGA	CTG	TGG	CAC	TCT	CGA	CTC	ACC	CGA	ATG	GCG	CAA	AGG	GC	1320
402	D	E	Y	v	С	т	D	С	G	т	L	D	S	Ρ	Е	W	R	K	G	P	
												I	ntr	on	2						
	CTAG	TGG	TCC	GAA	GAC	GCT	GTG	ТАА	TGC			GTg	taa	gtg	tcc	ttg	tca	caa	agt	gc	1380
422	S	G	P	к	т	L	С	N	A	С											
	tgaa	cgc	tac	taa	aaa	ctt	tgc	agT	GCG						_			ACA			1440
434									R	W	A	ĸ	ĸ	E	к	ĸ	R	Q	G	P	
	CCAG	TAG	CAG	CAC	GCC											GCC			TAC		1500
446	S	s	s	т	P					A		т	P	s	м	P	м	н	т	S	
	GTAC	CGG	TAG	CAG	CTG				gtt	tca	tca	gag	ttg	agt	ata	cag	rcaa	caa	agg	ct	1560
466	Т	G	S	S	•	(469)													
	ggct	tgc	ctt	cat	gcc	cac	cat	gtt	cct	tag	cat	cga	acc	agg	cct	aga	igtg	gca	gga	tg	1620
	tgcc	gcg	ccg	acg	aaa	gta	ccc	gga	gat	agg	tta	ctc	acg	ata	caa	ggt	act	gtg	cgt	ga	1680
	agct	cga	ggc	tag	agg	cca	cta	g													1703

Fig. 1. Nucleotide and deduced amino acid sequences of the white collar-2 (*wc*-2) gene (accession no. GQ254704) in wheat-biotype *Phaeosphaeria nodorum* isolate Sn37-1. The numbers 60 to 1703 (right column) designate nucleotides and the numbers 1 to 466 (left column) designate amino acids. Lower case letters represent 2 introns and the 3' end untranslated flanking sequence, and the upper case letters represent the nucleotide coding sequence. A PAS motif (aa111 - aa177) and 1 GATA-type zinc finger (Znf) domain (aa400 - aa452) are bracketed. Amino acids identical in PAS1 and Znf domains in *Phaeosphaeria* and other ascomycetes are dark boxed. The putative nuclear targeting sequence (KKKLK) is underlined.

With four primer sets described above, the full-length wc-2 gene sequence was amplified from 9 isolates of PN-w, 2 of P-rye, 5 of PN-b, 5 of Paa, 5 of Pat1, 2 of Pat2, 1 of Pat3 and 1 *Phaeosphaeria* sp. from dallis grass (*Paspalum dilatatum* Poir.) (P-dg) (Table 2). Primer set 2AA/2BA was substituted for 2A/2B for the wc-2 gene amplification in two Pat2 isolates (Table 1). In this study, the size of the wc-2 gene was 1,517 bp in all *Phaeosphaeria* species, with the exception of those in Pat2 and P-dg (Table 3). The size differences of the wc-2 gene in Pat2 and P-dg (1,524 bp and 1,518 bp, respectively) were attributed to intron 1 nucleotide sequences, which was 66 bp and 60 bp, respectively. The full length sequence of the predicted wc-2 mRNA in all *Phaeosphaeria* species was 1,410 bp

encoding a 469 amino acid size polypeptide.

Similar to *wc*-2 proteins in other ascomycetes, the *wc*-2 polypeptides in *Phaeosphaeria* species contained a PAS motif, which associates with the 'PAS A' motif of *wc*-1 protein to form heterodimerically a WCC (Fig. 1). The single putative GATA-type zinc finger (Znf) domain in wc-2 polypeptide of *Phaeosphaeria* and other ascomycetes were well conserved and belonged to zinc finger type IVb $(C-x_2-C-x_{18}-C-x_2-C)^{(24)}$. A putative nuclear targeting sequence (KKKLK) upstream (aa395 - aa399) of the Znf domain was also found (Fig. 1)⁽¹⁶⁾.

Nucleotide substitutions of the *wc-2* gene were fewer (from 1 to 17) within the species in PN-w, PN-b, Paa and Pat2 than between *Phaeosphaeria* species (Table 3). In

Table 3. Structure of	t tha white	collor 7	1100 21	anna in	Phagoo	nhaoria	0000100

Species/Isolates	Gene size	# of nucleotid	e substitutions	# of amino acid substitutions					
Species/isolates	(bp)	Intra-species [°]	Inter-species ^d	Intra-species [°]	Inter-species ^d				
Phaeosphaeria na	odorum (wheat-b	piotype) (PN-w)							
Sn37-1	1517	-		-					
$SN15^{a}(3)^{b}$		1		1					
Sn27-1 (1)		16		1					
8408		4		0					
9074 (1)		17		1					
<i>Phaeosphaeria</i> sp	o. (from Poland)	(P-rye)							
Sn48-1 (1)	1517	-	21	-	3				
Phaeosphaeria no	ndorum (harley l	p_{iotype} (PN b)							
S-83-2	1517		87	_	8				
S-80-603 (1)	1517	- 1	07	1	0				
S-80-611		1		1					
S-81-B9		2		2					
	· · · · · · · · · · · · · · · · · · ·								
Phaeosphaeria av ATCC12277	-	naria (Paa)	82		5				
	1517	- 9	82	- 0	3				
ATCC58582 (1 5413	.)	5		0					
Sa37-2		2		0					
		-		0					
Phaeosphaeria av	-	cea (Pat1)							
Sat24-1 (4)	1517	-	85	-	11				
Phaeosphaeria av	venaria f.sp. triti	cea (Pat2)							
ATCC26370	1524	-	166	-	17				
ATCC26377		1		1					
Phaeosphaeria av	venaria f sp. triti	icea (Pat3)							
S-81-W10	1517	-	85	_	5				
			05		2				
Phaeosphaeria sp			-		,				
S-93-48	1518	-	71	-	4				

^a The hypothetical polypeptide sequence (SNOG_14195) for Australian isolate SN15 was used.

^b Number of isolates with identical sequences is in parentheses (See Table 2).

[°] Substitutions as compared with the first isolate within the species.

^d Substitutions as compared with PN-w isolate Sn37-1.

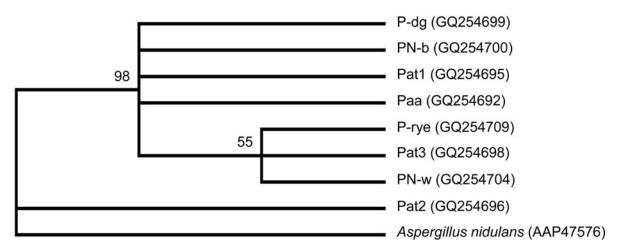


Fig. 2. Phylogenetic relationships based on the deduced amino acid sequences of the white collar-2 (*wc-2*) gene of cereal *Phaeosphaeria* pathogens. The 469 amino acid *wc-2* polypeptide sequences deduced from *Phaeosphaeria* pathogens are aligned and analyzed. The GATA factor of *Aspergillus nidulans* (Accession no. AAP47576) is used as the out-group in the analysis. GenBank Accession numbers for nucleotide sequences encoding the *wc-2* polypeptides of *Phaeosphaeria* pathogens are indicated.

comparison with PN-w Sn37-1 isolate, there were 21-166 nucleotide and 3-17 amino acid sequence differences in other *Phaeosphaeria* species (Table 3). Based on the analysis of deduced *wc-2* polypeptide sequences by using Mega Version 4.0 (http://www.megasoftware.net/index. html), all *Phaeosphaeria* species with the exception of Pat2 were closely related (Fig. 2). In addition to the *wc-2* gene, diversities of the nucleotides and their deduced polypeptide sequences in numerous genes including *bgl1*, *gpd*, *his*, *RPB2*, *tubA* and *wc-1* ^(5, 18, 20, 21, 26, 27) suggested that Pat2 evolved separately from other cereal *Phaeosphaeria* species. The Pat2 isolates used in this study were first isolated from wild foxtail barley in Minnesota, USA and reported to be highly virulent to commercially cultivated wheat⁽²²⁾.

LITERATURE CITED

- Ballario, P., Talora, C., Galli, D., Linden, H., and Macino, G. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of *Neurospora crassa* white collar proteins. Mol. Microbiol. 29: 719-729.
- 2. Brunner, M., and Schafmeier, T. 2006. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and *Neurospora*. Genes Dev. 20: 1061-1074.
- 3. Cheng, P., He, Q., He, Q., Wang, L., and Liu, Y. 2005.

Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev. 19: 234-241.

- Cheng, P., Yang, Y., Gardner, K. H., and Liu, Y. 2002. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of *Neurospora*. Mol. Cell. Biol. 22: 517-524.
- Chiu, E. Y., Lin, Y. H., Song, Q., Chang, P. F. L., Gao, L. Y., Chou, C. C., and Ueng, P. P. 2009. Alternative splicing and genetic diversity of white collar-1 (*wc-1*) gene in cereal *Phaeosphaeria* pathogens. Eur. J. Plant Pathol. (Unpublished data.)
- Collett, M. A., Garceau, N., Dunlap, J. C., and Loros, J. J. 2002. Light and clock expression of the Neurospora clock gene *frequency* is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160: 149-158.
- Crosthwaite, S. K., Dunlap, J. C., and Loros, J. J. 1997. *Neurospora wc-1* and *wc-2*: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276: 763-769.
- Cunfer, B. M. 1997. Taxonomy and nomenclature of Septoria and Stagonospora species on small grain cereals. Plant Dis. 81: 427-428.
- Cunfer, B. M. 2000. Stagonospora and Septoria diseases of barley, oat, and rye. Can. J. Plant Pathol. 22: 332-348.
- Cunfer, B. M. and Ueng, P. P. 1999. Taxonomy and identification of *Septoria* and *Stagonospora* species on small-grain cereals. Annu. Rev. Phytopathol. 37: 267-

284.

- de Paula, R. M., Vitalini, M. W., Gomer, R. H., and Bell-Pedersen, D. 2007. Complexity of the *Neurospora crassa* circadian clock system: multiple loops and oscillators. In "Clocks and Rhythms", B. Stillman, D. Stewart, and T. Grodzicker (eds.) Cold Spring Harbor Symp. Quantitative Biol. 72: 345-351. CSHL Press, 674 pp.
- 12. Dunlap, J. C. 1999. Molecular bases for circadian clocks. Cell 96: 271-290.
- Dunlap, J. C. 2006. Proteins in the *Neurospora* circadian clockworks. J. Biol. Chem. 281: 28489-28493.
- 14. Dunlap, J. C. 2008. Salad days in the rhythms trade. Genetics 178: 1-13.
- He, Q., Shu, H., Cheng, P., Chen, S., Wang, L., and Liu, Y. 2005. Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the *Neurospora* circadian negative feedback loop. J. Biol. Chem. 280: 17526-17532.
- Linden, H., and Macino, G. 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in *Neurospora crassa*. EMBO J. 16: 98-109.
- 17. Liu, Y., and Bell-Pedersen, D. 2006. Circadian rhythms in *Neurospora crassa* and other filamentous fungi. Eukaryotic Cell 5: 1184-1193.
- Malkus, A., Chang, P. F. L., Zuzga, S. M., Chung, K. R., Shao, J., Cunfer, B. M., Arseniuk, E., and Ueng, P. P. 2006. RNA polymerase II gene (*RPB2*) encoding the second largest protein subunit in *Phaeosphaeria nodorum* and *P. avenaria*. Mycol. Res. 110: 1152-1164.
- Noble, M., and Montgomerie, I. G. 1954. Seed-borne oat diseases. Straw-breaking and brown foot-rot. Scott. Agric. 34: 51-52.

- Malkus, A., Reszka, E., Chang, C. J., Arseniuk, E., Chang, P. F. L and Ueng, P. P. 2005. Sequence diversity of β-tubulin (tubA) gene in Phaeosphaeria nodorum and P. avenaria. FEMS Microbiol. Lett. 249: 49-56.
- Reszka, E., Chung, K. R., Tekauz, A., Malkus, A., Arseniuk, E., Krupinsky, J. M., Tsang, H., and Ueng, P. P. 2005. Presence of β-glucosidase (*bgl1*) gene in *Phaeosphaeria nodorum* and *Phaeosphaeria avenaria* f.sp. triticea. Can. J. Bot. 83: 1001-1014.
- Shearer, B. L., Skovmand, B., and Wilcoxson, R. D. 1977. *Hordeum jubatum* as a source of inoculums of *Septoria avenae* f. sp. *triticea* and *S. passerinii*. Phytopathology 67: 1338-1341.
- 23. Sprague, R. 1950. Diseases of cereals and grasses in North America. The Ronald Press Co., New York.
- 24. Teakle, G. R., and Gilmartin, P. M. 1998. Two forms of type IV zinc-finger motif and their kingdomspecific distribution between the flora, fauna and fungi. Trends in Biochem. Sci. 23: 100-102.
- 25. Ueng, P. P., Bergstrom, G. C., Slay, R. M., Geiger, E.A., Shaner, G., and Scharen, A. L. 1992. Restriction fragment length polymorphisms in the wheat glume blotch fungus, *Phaeosphaeria nodorum*. Phytopathology 82: 1302-1305.
- Ueng, P. P., Reszka, E., Chung, K. R., Arseniuk, E., and Krupinsky, J. M. 2003. Comparison of glyceraldehyde-3-phosphate dehydrogenase genes in *Phaeosphaeria nodorum* and *P. avenaria* species. Plant Pathol. Bull. 12: 255-268.
- 27. Wang, C. L., Malkus, A., Zuzga, S. M., Chang, P. F. L., Cunfer, B. M., Arseniuk, E., and Ueng, P. P. 2007. Diversity of the trifunctional histidine biosynthesis gene (*his*) in cereal *Phaeosphaeria* species. Genome 50: 595-609.

摘要

邱燕欣¹、張碧芳²、高凌岩³、周俊吉⁴、翁溥^{5,6}.2009. 穀類葉枯病菌白圈環 -2 基因之多型性. 植病會刊 18:175-183. (¹臺中新社 農委會種苗改良繁殖場;²臺中 國立中興大學植物病理學系; ³中國內蒙古農業大學生態與環境科學院;⁴臺南微兆發生命科學公司;⁵美國農部植物科學所分 子植物病理研究室;⁶聯絡作者,電子郵件:ppuuueng@gmail.com;傳真:+1-301-504-5449)

白圈環 -2 [white collar-2 (wc-2)] 基因編碼一個對光有反應的白圈環 -2 蛋白 (wc-2),白圈環 -2 蛋白與白圈環 -1 蛋白形成異質二元複合體 (heterodimeric complex),活化許多需光反應,包括:子囊菌的無性產孢與病原性強弱,並可維持其日週期時鐘 (circadian clocks)。本研究根據 穀類葉枯病菌的白圈環 -2 基因之推演蛋白質序列,分析其基因結構與譜系關係 (phylogenetic relationships)。在二株 Phaeosphaeria nodorum (大麥生物型 PN-b 與小麥生物型 PN-w)、四株 Phaeosphaeria avenaria (一株 P. a. f. sp. avenaria (Paa) 與三株 P. a. f. sp. triticea (Pat1、Pat2 及 Pat3)),一株由波蘭裸麥分得之 Phaeosphaeria sp. 菌株 (P-rye) 與一株由達利雀稗 (dallis grass) 分 得之 Phaeosphaeria sp. 菌株 (P-dg) 當中,白圈環 -2 基因包含二個內含子 (intron),轉錄產物為 一帶著 1,410-bp 開放解讀框的 mRNA,編碼 469 個胺基酸。根據這些推演的多胜肽序列所進行 的類緣關係分析顯示,除了由狐尾大麥 (Hordeum jubatum L.) 分離所得的 Pat2 菌株外, Phaeosphaeria 屬菌株在譜系關係中非常相近而為同一群。

關鍵詞:白圈環-2蛋白、Phaeosphaeria 屬、小麥