
Histidine is one of the essential amino acids which
are not synthesized by mammals and obtained from their
diet. In plants and microorganisms, histidine is mainly
synthesized from two precursors, 5-phospho-D-ribosyl-1-
pyrophosphate (PRPP) and ATP. Histidinol dehydrogenase
(L-histidinol:NAD+ oxidoreductase, EC 1.1.1.23) (HDH) is
the enzyme that catalyzes the last two steps (from L-
histidinol to histidine) in histidine biosynthesis. In
bacteria, fission yeast (Schizosaccharomyces pombe), and
higher plants, HDH is present as a single peptide, while
the other two important enzymes, phosphoribosyl-AMP

cyclohydrolase (PRA-CH; EC 3.5.4.19) and
phosphoribosyl-ATP pyrophosphohydrolase (PRA-PH; EC
3.6.1.31), which catalyze the third and the second steps in
the pathway, are combined in a single bi-functional
polypeptide (1, 6, 13).  In other yeasts (Saccharomyces
cerevisiae with HIS4 gene) and many filamentous fungi
(Neurospora crassa with his-3 gene), PRA-CH, PRA-PH
and HDH enzymes are aligned orderly as a tri-functional
polypeptide which catalyzes histidine biosynthesis (4, 10).

Septoria disease of cereal is a disease complex caused
by a number of fungi including two major pathogens
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The histidine biosynthesis gene (his) sequence was obtained from wheat-biotype Phaeosphaeria

nodorum genomic DNA using a "step down" PCR amplification technique. The 2700-bp his gene

fragment contained two exons and a 51-bp intron. The two exons of this gene encoded a complete

881-amino acid protein. Like the histidine synthesis proteins in other filamentous ascomycetes, the

deduced protein contained the conserved domains for three biosynthetic activities: phosphoribosyl-

AMP cyclohydrolase (PRA-CH; EC 3.5.4.19), phosphoribosyl-ATP pyrophosphohydrolase (PRA-PH;

EC 3.6.1.31), and histidinol dehydrogenase (HDH; EC 1.1.1.23). The substrate and zinc ion binding

location in this tri-functional histidine biosynthesis protein is discussed.
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belonging to Mycosphaerella (anamorph; Septoria) and
Phaeosphaeria (anamorph; Stagonospora) (16, 18). Cereal
Septoria pathogens are classified largely based on fungal
morphology and host specificity (2, 3, 15). Since the asexual
stage pycnidiospore size of Phaeosphaeria species varies
within single-spore cultures derived from the same isolate
and is influenced by environmental conditions, their
identification is complicated and difficult (8, 9). Recently,
molecular approaches have been used to study the
phylogenetic relationships in Phaeosphaeria and other
ascomycetes. The molecular tools may facilitate the
identification of Phaeosphaeria pathogens in cereals (25). It
was reported that protein-coding genes may contribute to
resolving the deep phylogenetic relationships in fungi (17).
Several genes encoding structural and functional important
proteins such as -glucosidase, glyceraldehyde-3-
phosphate dehydrogenase, mating-type determinants and

-tubulin have been used for this purpose in cereal
Phaeosphaeria species (11, 14, 23, 24). Here, we reported the
isolation of a tri-functional histidine biosynthesis gene
(his) in wheat-biotype Phaeosphaeria nodorum. The
potential presence of genetic diversities in nucleotide and
its translated peptide sequences in the his gene may be
useful for phylogenetic studies and species identification
in the cereal pathogens causing Stagonospora leaf blotch
diseases.

The wheat-biotype P. nodorum isolate Sn37-1 from
Szelejewo, Poland was used for the his gene isolation.
Procedures for fungal culture in a liquid medium and for
genomic DNA (gDNA) isolation were described
previously (22). The his gene coding sequence was obtained
with a "step down" PCR amplification technique (26). A
specific primer xy4B (CGAGAACGTTGTAAAAGAC
GGACG) designed from a partial xylanase (endo-1, 4- -
xylanase; EC 3.2.1.8) (xyl) sequence (unpublished data)

and primer pp1 (GTAATACGACTCACTATAGGGC) were
used to amplify NheI-digested/adaptor 1-ligated genomic
DNA mix. The primer pp1 recognized a sequence on
adaptor 1 and served as the upstream primer for PCR (26). A
ca. 2.2 kb PCR fragment was eluted from agarose gel
block after resolving by electrophoresis and sequenced
(Fig. 1). Based on this known sequence, the primer 4x7
(CTATCGCGTTGTTAGCATTGCAC) was then designed
and used along with pp1 for a second PCR. A ca. 2.5 kb
fragment was amplified from the XbaI-digested/adaptor 1-
ligated genomic DNA mix (Fig. 1). It appears that the his
gene is ca. 1 kb upstream and closely located to one of the
xyl genes in wheat-biotype P. nodorum (Fig. 1). By using
the FGENESH program (http://www.softberry.com) with
Aspergillus as the organism parameter, two exons and one
51-bp size intron (nt2547-nt2597 in Fig. 1) were predicted
in the 2697-bp size his gene (accession no. DQ312266).

The 2646-bp nucleotide sequence in two exons of his
gene from wheat-biotype P. nodorum encoded a protein of
881 amino acid residues. In higher plants, the histidine
biosynthesis gene products are expressed as nuclear
protein precursors and exported to the chloroplasts for
biosynthesis of histidine (13). Unlike the bi-functional PRA-
PH and PRA-CH polypeptide in Arabidopsis and the HDH
protein in cabbage (Brassican oleracea L.) (6, 13), which
possess chloroplast transit peptide sequences in the N-
terminals, the wheat-biotype P. nodorum his gene-encoded
protein had no signal peptide as predicted with CBS
Prediction Servers (http://www.cbs.dtu.dk).

Six tri-functional histidine biosynthesis peptide
sequences of higher ascomycetes were retrieved from
GenBank, including P. nodorum (DQ312266),
Magnaporthe grisea (XP_363383), Aspergillus nidulans
(XP_658401), Neurospora crassa (P07685), Gibberella
zeae (XP_381041) and Aspergillus fumigatus
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Fig. 1. Structure of tri-functional histidine biosynthesis gene (his; 'dark' box) in wheat-biotype Phaeosphaeria nodorum.
The numbers in parentheses indicated to the nucleotide numbers (nt) of the sequenced PCR products.The 51-bp size intron
in the his gene is positioned at nt2547 to nt2597. The partial sequence of xylanase gene (xyl) is shown in 'grey' box. The
PCR products amplified by two oligonucleotide primers, 4x7 and xy4B, are indicated by arrows. 
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(EAL90788). As compared to the counterpart in bacterium
Salmonella typhimurium, the amino acid sites associated
with substrate binding and catalytic activity were well
conserved in the histidine biosynthesis tri-functional
peptides in wheat-biotype P. nodorum and other
ascomycetes (Fig. 2). Both the HDH and the PRA-CH
peptides in bacteria have been reported to be zinc-
activated metalloenzymes. The substrate L-histidinol
binding site (Cys-117) and zinc ion ligand formation sites
(His-262, His-327 and His-419), experimentally
determined in the HDH of Salmonella typhimurium
(accession no. P10370), were correspondingly found in the
HDH of these ascomycetes (Fig. 2C) (7, 12, 19, 20). Like in the

PRA-CH in Methanococcus vannielii, a conserved region
C(X)15CH(X)5C for Zn ion binding and being responsible
for catalytic activity, was also found in the putative PRA-
CH conserved region of the histidine biosynthesis tri-
functional polypeptides in these ascomycetes (Fig. 2A) (5).

Twelve histidine biosynthesis tri-functional peptides
in ascomycetes, including that from wheat-biotype P.
nodorum ,  were used for the study of phylogenetic
relationships. The 795-881 amino acid sequences were
aligned with ClustalX (1.83) in a multiple sequence
alignment mode (21). From the aligned sequences, 1,000
data sets were generated by bootstrap re-sampling in the
'seqboot' program of Phylogeny Inference Package
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Fig. 2. Alignment of the deduced amino acid sequences of tri-functional histidine biosynthesis genes from representative
filamentous ascomycetes. Six ascomycetes including wheat-biotype Phaeosphaeria nodorum (DQ312266), Magnaporthe
grisea (XP_363383), Aspergillus nidulans (XP_658401), Aspergillus fumigatus (EAL90788), Neurospora crassa (P07685)
and Gibberella zeae (XP_381041) were used for comparison. The amino acids conserved in the regions possessing
enzymatic activities of phosphoribosyl-AMP cyclohydrolase (PRA-CH) (A), Phosphoribosyl-ATP pyrophosphohydrolase
(PRA-PH) (B) and Histidinol dehydrogenase (HDH) (C), respectively, was shaded. The Zn binding motif in PRA-CH was
underlined. In HDH, the substrate L-histidinol binding site (Cys-117) was boxed, and the zinc ion ligand formation sites
(His-262, His-327 and His-419) were underlined. The GenBank accession numbers are given in parentheses.



(PHYLIP) Version 3.6 (alpha2) (http://evolution.
genetics.washington.edu/phylip.html). The bootstrapped
data sets were evaluated by the maximum likelihood (ML)
method using the 'proml' program for polypeptides.
Finally, the 'consense' program was used to construct a
'tree'. It appeared that histidine biosynthesis peptides from
yeasts and filamentous fungi formed two separate
phylogenetic clades, and the his gene-encoded peptide in
wheat-biotype P. nodorum was more closely related to that
of Aspergillus fumigatus (Fig. 3). These data suggest that
the tri-functional polypeptide sequences for histidine
biosynthesis support the phylogenetic relations in
ascomycetes.
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